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ABSTRACT

Lightning is a key driver of wildfire activity in Alaska. Quantifying its historical variability and trends

has been challenging because of changes in the observational network, but understanding historical and

possible future changes in lightning activity is important for fire management planning. Dynamically

downscaled reanalysis and global climate model (GCM) data were used to statistically assess lightning

data in geographic zones used operationally by fire managers across Alaska. Convective precipitation was

found to be a key predictor of weekly lightning activity through multiple regression analysis, along with

additional atmospheric stability, moisture, and temperature predictor variables. Model-derived estimates

of historical June–July lightning since 1979 showed increasing but lower-magnitude trends than the ob-

served record, derived from the highly heterogeneous lightning sensor network, over the same period

throughout interior Alaska. Two downscaled GCM projections estimate a doubling of lightning activity

over the same June–July season and geographic region by the end of the twenty-first century. Such a

substantial increase in lightning activity may have significant impacts on future wildfire activity in Alaska

because of increased opportunities for ignitions, although the final outcome also depends on fire weather

conditions and fuels.

1. Introduction

Wildfire has a prominent role in the boreal forests of

Alaska in summer. Although most fires are started by

human activity, approximately 90% of the area burned

each year is from wildfires started by lightning (Shulski

and Wendler 2007). These lightning-ignited wildfires

have been occurring, primarily in interior Alaska, for

thousands of years (Lynch et al. 2004). The amount of

area burned has increased in recent decades, with an

increased frequency of extreme years compared to when

formal records first began in the 1940s (Kasischke et al.

2010). The magnitude and extremes of historical Alaska

fire seasons have been shown to be linked with broader

modes of climate variability (Duffy et al. 2005; Hess

et al. 2001; Macias Fauria and Johnson 2006) and an-

thropogenic climate change (Partain et al. 2016). Future

climate projections also anticipate increased wildfire

activity in Alaska over the next century (Melvin et al.

2017; Veraverbeke et al. 2017; Young et al. 2017, 2019).

Therefore, understanding the historical drivers, variabil-

ity, and trends and evaluating possible future changes

of lightning activity are important to ultimately tell the

story of wildfires in Alaska.

Lightning activity has been a concern in the Alaska fire

weather research community since at least the 1950s. The

first study of lightning activity in Alaska was conducted

by Sullivan (1963) who estimated thunderstorm develop-

ment using surface weather charts and found that surface

convergence and stability were key to their development.

This study was later followed by analysis of lightning/

thunderstorm activity through satellite retrievals (Biswas

and Jayaweera 1976) and records maintained by the

Bureau of Land Management (Grice and Comiskey

1976) that established the first lightning climatologies

for Alaska. The network of lightning sensors currently

used to monitor lightning activity in Alaska underwent

initial testing in the late 1970s (Krider et al. 1980).Corresponding author: Peter A. Bieniek, pbieniek@alaska.edu
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Since its initial deployment, the detection sensors have

been upgraded several times. These changes have led

to changes in both the coverage and accuracy/efficiency

of the network (Dissing and Verbyla 2003; Farukh and

Hayasaka 2012; Farukh et al. 2011a; Fronterhouse

2012), resulting in a heterogeneous record in both space

and time.

Climatologies developed through various historical

studies of observed lightning activity show that most

thunderstorms occur in interior Alaska in June–July

(Biswas and Jayaweera 1976; Grice and Comiskey

1976; Reap 1991). The thunderstorms that generate

this lightning activity are generally driven by either

the air mass or synoptic forcing in Alaska (Biswas and

Jayaweera 1976). As is the general case with thun-

derstorms, instability is a key driver and has been

shown to be a potential proxy for lightning activity in

Alaska (Farukh et al. 2011a; Reap 1991; Sullivan

1963). Thunderstorm activity has also been shown to

be enhanced due to land surface characteristics such

as vegetation and topography (Dissing and Verbyla

2003). In addition, burn scars from earlier wildfires

may increase the potential for thunderstorm devel-

opment (Mölders and Kramm 2007).

The recent large fire years of 2004, 2005, and 2015

have all been attributed to lightning ignitions (Farukh

et al. 2011b; Partain et al. 2016; Wendler et al. 2011).

Efforts to better predict lightning and lightning-caused

fires have been ongoing and have ranged from statisti-

cal approaches (Duffy et al. 2005; Farukh et al. 2011a;

Reap 1991) to atmospheric circulation map-type analy-

sis (Henry 1978). Given the recent increases in wildfire

activity (Kasischke et al. 2010) and projections for

continued increases (Melvin et al. 2017), understanding

how lightning activity has changed or might change in

the future is needed to better plan for future fire seasons.

Globally, lightning activity is anticipated to increase as

the climate warms over the next century according to

model projections (Krause et al. 2014; Price and Rind

1994). Lightning and lightning-caused fires are also

projected to increase in the contiguous United States

(Romps et al. 2014) and in Alaska over the same period

(Veraverbeke et al. 2017).

While the studies highlighted above provide gen-

eral indications of wildfire trends, there is a need for

more quantitative assessments of historical and fu-

ture projections of lightning activity across Alaska.

This paper studies lightning on weekly to seasonal

scales over specific geographic regions (i.e., Predictive

Service Areas) used operationally by fire managers to

provide information that can support long-term de-

cision making. Novel aspects of this study also include

the use of dynamically downscaled climate data to

evaluate lightning in Alaska and an assessment of

historical trends.

2. Data and methods

Dynamically downscaled reanalysis and global cli-

mate model (GCM) simulations of future climate were

used to analyze historical and projected lightning ac-

tivity in Alaska. The ERA-Interim reanalysis (Dee et al.

2011) was downscaled for the period 1979–2015 to pro-

vide the historical observations. The historical and

RCP8.5 emission scenario simulations from two GCMs

of phase 5 of the Coupled Model Intercomparison

Project (CMIP5) were downscaled for 1970–2100.

The two GCMs were the Geophysical Fluid Dynamics

Laboratory Coupled PhysicalModel, version 3 (GFDL),

and National Center for Atmospheric Research

Community Climate System Model, version 4 (CCSM).

The ERA-Interim reanalysis was selected because it was

one of the best-performing products over the Alaska

and Arctic domains (Lader et al. 2016; Lindsay et al.

2014). Walsh et al. (2018) show that CCSM and GFDL

ranked first and third, respectively, among 21 CMIP5

GCMs in the simulation of the seasonal cycles of tem-

perature, precipitation, and sea level pressure over

Alaska. RCP8.5 is the highest forcing scenario with the

greatest degree of warming in Alaska over lower sce-

narios such as RCP4.5 (Markon et al. 2018), and it was

selected because observed carbon dioxide emissions

have continued to best track RCP8.5 (Peters et al. 2013).

The reanalysis and GCM projection data were dy-

namically downscaled using the Advanced Research

version of the Weather Research and Forecasting

(WRF) Model (ARW; Skamarock et al. 2008) over the

entire Alaska domain [see Fig. 1a in Bieniek et al.

(2016)]. The model provided 20-km spatial resolution

data that better account for the complex topography

of Alaska than the relatively coarse (100–200 km) re-

analysis or GCM data, and the output was saved at

hourly time increments (Bieniek et al. 2016). Although

20-km spatial resolution is still generally too coarse

to evaluate individual thunderstorms, it provides de-

tailed meteorological data that can be used to evaluate

the general atmospheric characteristics associated with

weekly to seasonal lightning activity over broader re-

gions as in our study. The WRF Model was reinitialized

at 48-h intervals with an additional 6-h spinup time

and a spectral nudging procedure that constrained

the downscaled fields to be consistent with the driving

reanalysis or GCM. Clouds and precipitation in the

WRF Model were parameterized by the Morrison

2-moment (Morrison et al. 2009) and Grell 3D cumulus

schemes. Shortwave and longwave radiative effects were
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parameterized by the Rapid Radiative Transfer Model

for GCMs (Iacono et al. 2008). Boundary layer and

surface layer processes utilized the Mellor–Yamada–

Janjić (Janjić 1994) and Janjić eta (Monin–Obukhov)

schemes, respectively. A thermodynamic sea ice model

(Zhang and Zhang 2001) was coupled with the Noah

land surface model used within WRF to better model

the thermal conditions over sea ice. The WRF Model

configuration, physics, and temperature and precipita-

tion output are described and evaluated in detail in

Bieniek et al. (2016).

Observed cloud-to-ground lightning strike data were

obtained from the Alaska Lightning Detection Network

(ALDN) for 1986–2015 (1987 and 1989 were not in-

cluded in our analysis due to missing data). The ALDN

data consist of the location, date, and time of each

lightning strike determined by a network of magnetic-

direction-finding stations (see locations of the stations as

of 2017 in Fig. 1). To best work with these data, the

number of lightning strikes over land were counted

within each 20-km grid box each day on the same grid as

the dynamically downscaled meteorological data de-

scribed above. The count of strikes was produced at a

daily scale and then summed over each week for the

evaluation. This procedure ultimately resulted in weekly

20-km grids of observed lightning strike counts covering

all of Alaska over 1986–2015 but they required addi-

tional homogenization prior to conducting our analysis.

The network of ALDN lightning sensors used to

produce the weekly observed lightning strike count grids

was first developed in the 1970s (Krider et al. 1980) and

has been upgraded and expanded multiple times since

(Farukh andHayasaka 2012; Fronterhouse 2012). These

upgrades have changed the detection accuracy and ef-

ficiency, especially after 2000 when sensors were up-

graded to Vaisala Impact ES sensors and detection

efficiency increased from 40%–80% to 80%–90%

(Farukh and Hayasaka 2012; Farukh et al. 2011a). The

networkwas further upgraded to a completely new set of

time-of-arrival sensors (operated by TOASystems, Inc.)

after 2012. These changes in detection efficiency and

accuracy through the record make the data challenging

to use for assessing the variability and trends of lightning

over the historical period. One key difference from the

original network was that the post-2012 sensors counted

the individual strokes per flash rather than only the

flashes of lightning. That switch resulted in a change in

the character of the data after 2012. To correct for this

specific issue, the lightning data were homogenized by

exploiting the strike multiplicity information that was

included in the pre-2012 data, which provides an esti-

mate of the number of strokes that occurred within each

flash of lightning. The multiplicity parameter (i.e., the

number of strokes) was summed for the pre-2012 data

instead of counting each flash that occurred in each

20-km grid box. This simple approach provides an esti-

mated number of lightning strokes each year over the

1986–2011 period that is more in line with how lightning

was observed during the 2012–15 period in the interior

(Fig. 2). On average this procedure increased the light-

ning counts in 1979–2011 by approximately 1.5 times.

The final gridded observed lightning product representing

FIG. 1. Map of Alaska PSAs and locations of the lightning sensors (points) as of 2017. Interior

PSAs have gray hatching.
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the number of lightning strokes across all of Alaska for

1986–2015 will be analyzed in this study. Hereinafter,

these gridded homogenized lightning data will be re-

ferred to as the observations unless otherwise noted. In

addition, we will hereinafter refer to lightning strikes

rather than strokes for simplicity. It is important to note

that, while we took steps to homogenize the observed

lightning data, many heterogeneities still exist that re-

quire considerable caution when interpreting variabil-

ity and change using these data. These heterogeneities

specifically include changes in sensor coverage espe-

cially in regions outside of interior Alaska where light-

ningmay not have been observed earlier in the historical

record. Similar issues had to be addressed in the light-

ning climatology studies performed for the contiguous

United States by Koshak et al. (2015) with regard to

various upgrades in the National Lightning Detection

Network.

The analysis in this studywas conducted statewide and

aggregated over 21 Predictive Service Areas (PSAs; see

map in Fig. 1). These PSAs are used by fire man-

agers and weather forecasters at the Alaska Interagency

Coordination Center and the Alaska Fire Service to

operationally assess fire risk. The 20-km downscaled

weather/climate parameters and observed lightning data

were masked and aggregated to the PSAs. Conducting

our analysis following the PSAs makes the results from

the study more readily useable to the Alaska fire man-

agement community. The large geographic extent of the

PSA does not allow for the evaluation of lightning at

the scale of individual thunderstorms, which was not the

focus of this study. Instead, the focus of this study is on

the broader weekly to monthly variability of lightning

activity for which a coarser spatial scale is warranted.

We focused our analysis on the interior Alaska subset of

the PSAs (hereinafter referred to as the interior PSAs):

Tanana Valley-West, Tanana Zone-South, Koyukuk

andUpper Kobuk, Lower Yukon, Upper YukonValley,

Copper River Basin, Tanana Zone-North, and Tanana

Valley-East. The interior PSAs were selected as a focus

of our study because they have had the most consistent

lightning observations through time, encompass most of

Alaska’s historical burned areas (Shulski and Wendler

2007), and are primarily located within the interior cli-

mate divisions (Bieniek et al. 2012). Results for the

other PSAs will be shown for reference when applicable

but they contain higher uncertainty because of the more

limited and heterogenous records of lightning observa-

tions available in those regions.

The observed lightning and reanalysis data were re-

lated and explored in the context of multiple linear re-

gression analysis at a weekly time scale within each

PSA. The weekly time scale was selected to capture

the shorter duration of synoptic events that lead to

subseasonal to seasonal variability of lighting activity

without attempting to capture the more local and shorter

time scalemeteorological conditions that drive individual

thunderstorms. Theweekly aggregated lightning data and

the five reanalysis predictor variables (discussed below)

were fit over 1999–2014 using the weeks in June–July by

least squares regression. This training period was se-

lected because most of the years had relatively stable

sensor coverage and excluded the years of 1986–98 and

2015 for evaluation purposes. The 1999–2014 period also

incorporates the years in 1999–2011 that were homog-

enized as described earlier in this section, therefore

some uncertainty was likely added to the fitting data.

However, it was necessary to have enough years of data

to best represent the atmospheric conditions that lead

to lightning activity in Alaska, so those years were in-

cluded. It is also very challenging to accurately compare

the results of the regression models with the 1986–98

observations for many PSAs since sensor coverage was

sparse, especially earlier in the record. The atmospheric

predictor variables considered were convective precip-

itation amount, 2-m temperature, dewpoint tempera-

ture, 500-hPa height, and the 850–500-hPa temperature

difference. These predictor variables were considered as

they have all been evaluated in prior studies of Alaska

lightning activity (e.g., Reap 1991; Peterson et al. 2010).

We focused our regression analysis on the June–July

period since that is the core period of Alaska lightning

activity, therefore the use of the regression models be-

yond these months should only be done with caution.

FIG. 2.May–August counts of lightning strikes across the interior

PSAs for the historical network (1986–2012; blue), the new up-

graded sensor network (2012–15; orange), and the historical ho-

mogenized strike counts (gray). The homogenized data are used in

this study and are referred to as the observed data unless other-

wise noted.
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The best-fit regression model for each PSA was deter-

mined by the stepwise Akaike information criteria

(AIC) approach (Wilks 2006). The regressions were

analyzed using Pearson’s correlation and also domi-

nance analysis (Budescu 1993) to determine the relative

contribution of each predictor variable in the variability

of the model-estimated lightning activity. Trends were

evaluated through the Theil–Sen trend estimator ap-

proach, and the percent change was determined using

the applicable endpoint values of the regression line.

The statistical significance of the correlations was as-

sessed using a two-tailed Student’s t test at the 95%

level. The significance of the trends was evaluated by the

Mann–Kendall trend test.

3. Results and discussion

a. Historical lightning climatology

The gridded monthly averaged observed lightning

over 1986–2015 is shown for May, June, July, and

August in Fig. 3. Most lightning activity occurs in June

and July, with some 20-km grid cells in the interior of

Alaska receiving more than 30 strikes per month on

average. Climatologically, very little lightning occurs

along the coasts and on the North Slope even during the

peakmonths. These findings are spatially consistent with

the earlier lightning climatologies developed for Alaska

(Biswas and Jayaweera 1976; Grice and Comiskey 1976;

Reap 1991). In contrast to June and July, very little

lightning activity occurs in May and August. What little

lightning occurs in these months is also mostly in the

interior.

The total number of strikes each May–August season

was summed over the interior PSAs and is shown in

Fig. 4. The average number of lightning strikes in the

interior over the summer is 13 786 with a standard de-

viation of 8662. The four years that exceeded 1 standard

deviation above the mean lightning strikes occurred

after 2000 and were 2004, 2005, 2015, and 2007. The

Alaska fire seasons of 2004, 2005, and 2015 are three of

the four the largest seasons asmeasured by the total area

burned on record, and lightning was cited as a key driver

for their large magnitudes (Farukh et al. 2011b; Partain

et al. 2016; Wendler et al. 2011). The 2007 season had

below-average area burned due to relatively wet fuels

from rainfall that limited fire growth even though there

were many lightning-caused fires.

Lightning is a result of thunderstorms and convection.

The dynamically downscaled convective precipitation

FIG. 3. Monthly average number of lightning strikes in each 20-km grid box over 1986–2015 for (a) May, (b) June,

(c) July, and (d) August.
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variable output from the WRF cumulus parameteriza-

tion scheme was considered as a potential simple esti-

mate of thunderstorm activity. When the downscaled

reanalysis convective precipitation was compared with

the lightning observations summed over the interior,

there was an overall correlation of 0.53 (Fig. 4). This

correlation indicates that seasons with higher lightning

activity occur in conjunction with enhanced convec-

tive precipitation and this is especially apparent for the

peak lightning years after 2000. The correspondence of

lightning and convective precipitation also extends cli-

matologically over the entire May–August season. The

1979–2015 monthly average downscaled ERA-Interim

convective precipitation is shown in Fig. 5. Like the

lightning climatologies shown in Fig. 3, the largest

amounts of convective precipitation occur on average in

June and July with lesser amounts in May and August.

The core months and region of lightning activity in in-

terior Alaska align well with the climatological con-

vective precipitation based on this analysis.

Precipitation from WRF has been used to broadly

evaluate observed lightning activity in other regions

(Giannaros et al. 2015; Yair et al. 2010) and in GCMs

(Magi 2015). Typically, there is higher lightning activity

with higher convective precipitation amounts in obser-

vations (Gungle and Krider 2006). The results of these

prior studies, while not conducted in Alaska, are con-

sistent with our findings. However, one additional ca-

veat for Alaska is that lightning also occurs in dry

thunderstorms in which precipitation does not reach the

FIG. 5. Monthly average amount of the downscaled ERA-Interim reanalysis convective precipitation (mm) over

1979–2015 for (a) May, (b) June, (c) July, and (d) August.

FIG. 4. May–August interior PSA average convective precipi-

tation from the downscaled ERA-Interim reanalysis (blue) and

observed number of lightning strikes (orange).
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ground and can lead to greater likelihoods that wildfires

will be ignited (Peterson et al. 2010). Dry thunder-

storms would not be accurately reflected under the hy-

pothesis that more convective precipitation leads to

more lightning. As a result, convective precipitation

only explains a portion of the variability of lightning at

the monthly to seasonal scale.

To create a more complete picture of the local

climate-scale drivers of lightning, additional predictor

variables were compared with lightning at the weekly

scale using multiple linear-regression analysis. These

predictors include stability, humidity and temperature

variables, described below and in section 2 (data and

methods), that help to better account for conditions

where lightning may occur but convective precipitation

amounts are low. These variables were selected as they

are associated with known ‘‘rules of thumb’’ in the

Alaska weather forecasting community and are gener-

ally consistent with similar studies evaluating the me-

teorological drivers of Alaska lightning (i.e., Calef et al.

2008; Farukh et al. 2011a; Peterson et al. 2010; Reap

1991; Veraverbeke et al. 2017). The analysis was con-

strained to the PSA level for best consistency with

Alaska fire manager needs while accounting for regional

variations in lightning–climate links across the state. The

downscaled reanalysis parameters specifically consid-

ered as predictor variables were convective precipita-

tion, the 850–500-hPa temperature difference (dT), 2-m

dewpoint temperature, 2-m temperature, and 500-hPa

height. The variables were first normalized by sub-

tracting themean and dividing by the standard deviation

and then analyzed using multiple regressions to find the

optimal models for each PSA. The normalized vari-

ables were then used as predictors to reduce the impacts of

the biases in the downscaled ERA-Interim reanalysis

(Bieniek et al. 2016). The final results for eachPSAand the

values of the coefficients of the regression equation are

given (when applicable) in Table 1. When the regression

estimates of lightning were compared with the observa-

tions over June–July (Fig. 6) all PSAs had correlations

greater than 0.30 while many in the interior exceeded 0.5.

The amount of weekly observed lightning vari-

ance explained by the regression model estimates and

the contribution of individual predictors are shown in

Table 2. Convective precipitation accounted for most of

the variance explained for most PSAs, especially those

located in the interior. Multiple prior studies have sim-

ilarly evaluated lightning and/or lightning-ignited fires in

Alaska by regression analysis (Calef et al. 2008; Farukh

et al. 2011a; Reap 1991; Veraverbeke et al. 2017). As in

our analysis, most prior studies considered stability

predictor variables such as convective available poten-

tial energy (CAPE) or the 850–500-hPa lapse rate (as in

our study) and additional variables such as wet-bulb

temperature (e.g., Koshak et al. 2015; Jayaratne and

Kuleshov 2006; Williams and Renno 1993), surface

TABLE 1. Multiple regression coefficients for estimating weekly lightning strike numbers in each PSA. Coefficients are shown for

convective precipitation (CP), 850–500-hPa temperature difference (dT), 2-m dewpoint temperature (Td), 2-m temperature (T2m), and

500-hPa heights (500 hPa). Blank cells indicate predictor variables that were not included in the regression equation for each PSA after

stepwise AIC model reduction.

PSA Intercept CP dT Td T2m 500 hPa

Northern Panhandle 4.0 14.5

Central Panhandle 1.2 3.2 5.3 25.1 4.2

Southern Panhandle 1.4 1.7 0.9

Matanuska Valley and Anchorage 29.4 23.3 24.9 216.8

Kenai Peninsula 10.9 13.8 17.4 223.7

Tanana Valley-West 924.4 431.7 187.6 396.5

Susitna Valley 253.6 116.6 260.5 2126.3

Tanana Zone-South 1438.6 1278.3 456.8

Koyukuk and Upper Kobuk 289.9 124.8 156.2 226.9 2114.1

Lower Yukon 546.5 564.1 139.3 2175.3 241.6

Middle Yukon 651.5 435.5 267.6 101.5

Upper Yukon Valley 2055.3 1192.3 289.2 504.5

Copper River Basin 301.1 146.4 363.0 2178.1

Kodiak Island 0.3

North Slope 361.3 228.4 318.1 232.4 2237.0

Tanana Zone-North 842.3 338.5 273.8 354.5

Seward Peninsula 230.1 316.2 76.7 298.2 68.2

Bristol Bay and Alaska Peninsula 221.2 211.9 97.5 110.7

Yukon-Kuskokwim Delta 199.0 149.3 79.5

Tanana Valley-East 397.2 180.4 223.8 284.6

Kuskokwim Valley 826.7 590.2 246.1 201.2
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temperature, and dewpoint. However, all studies had

an eye to different spatial and time scales. While our

analysis looked at weekly/PSA estimates of lightning,

our results and the final predictor variables were broadly

consistent with the prior lightning-regression studies

in Alaska.

Since convective precipitation is a key driver in

the regression models for most PSAs the question of

lightning that occurs in thunderstorms with little or no

precipitation is of concern since some lightning activity

could be missed even when considering the additional

nonprecipitation predictor variables. In this analysis we

focus on weekly-to-seasonal-scale lightning variability;

therefore, an analysis of precipitation for individual

strikes and thunderstorms is beyond the scope of this

study. However, analysis of weekly precipitation and

lightning data will highlight if lightning also occurred

during dry conditions in each PSA. Figure 7 shows a

comparison of the ranges of all of the interior PSA June–

July weekly averaged convective precipitation amounts

when one or more strikes occurred in the corresponding

PSA during the week for 1999–2015. Likewise, the

amounts of convective precipitation were also binned

for weeks in the same PSAs where no lightning was

observed are shown for comparison (Fig. 7). Weeks with

observed lightning activity (Fig. 7a) covered a broad

range of convective precipitation amounts in the inte-

rior, and the results also show that many weeks have

lightning even within the lowest 0–1mmday21 bin. The

modeled estimates based on our predictors (Fig. 7b)

shows very similar results, although the model has about

15% fewer PSA-week lightning events than the obser-

vations in the lowest 0–1mmday21 range. Therefore,

the PSA regression models reasonably capture lightning

activity even during weeks with relatively low precipi-

tation amounts.

FIG. 6. Correlations R of June–July regression estimates of

lightning strike counts vs observations for 1986–2015 for each PSA.

Darker red shading corresponds to higher correlation values. All

correlations were significant at the 95% or greater level except for

the Tanana Zone-South and Lower Yukon PSAs.

TABLE 2. Coefficient of determination R2 for each PSA determined by dominance analysis and the total value for the weekly fitting

period of 1999–2014. Values are shown for convective precipitation (CP), 850–500-hPa temperature difference (dT), 2-m dewpoint

temperature (Td), 2-m temperature (T2m), and 500-hPa heights (500 hPa). Cells are blank if the predictor variable was not part of the

regression equation for the PSA.

PSA CP dT Td T2m 500 hPa Total fitted

Northern Panhandle 0.10 0.10

Central Panhandle 0.02 0.04 0.02 0.03 0.11

Southern Panhandle 0.09 0.03 0.12

Matanuska Valley and Anchorage 0.15 0.08 0.02 0.25

Kenai Peninsula 0.08 0.07 0.09 0.25

Tanana Valley-West 0.05 0.14 0.14 0.33

Susitna Valley 0.09 0.15 0.03 0.27

Tanana Zone-South 0.37 0.03 0.40

Koyukuk and Upper Kobuk 0.11 0.10 0.10 0.02 0.32

Lower Yukon 0.19 0.09 0.05 0.02 0.34

Middle Yukon 0.20 0.14 0.01 0.34

Upper Yukon Valley 0.24 0.06 0.04 0.33

Copper River Basin 0.03 0.09 0.03 0.16

Kodiak Island

North Slope 0.11 0.13 0.07 0.04 0.36

Tanana Zone-North 0.07 0.05 0.07 0.19

Seward Peninsula 0.22 0.09 0.05 0.01 0.36

Bristol Bay and Alaska Peninsula 0.12 0.09 0.02 0.23

Yukon-Kuskokwim Delta 0.14 0.08 0.22

Tanana Valley-East 0.17 0.14 0.02 0.33

Kuskokwim Valley 0.18 0.10 0.01 0.30
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b. Past and anticipated variability and trends

Evaluating the variability and trends of the historical

lightning data has been challenging due to the hetero-

geneities that arise from the upgrades made to the net-

work since its inception (Farukh and Hayasaka 2012;

Farukh et al. 2011a). Therefore, it is informative to

compare the observed lightning trends with the model

estimates output by the regressions over the histori-

cal period. The percent change of the observed

and regression-estimated lightning from the downscaled

ERA-Interim reanalysis are shown for each PSA for

June–July in Figs. 8a and 8b. The observed lightning

over 1986–2015 (Fig. 8a) increased by more than 100%

in most PSAs with a few, notably the North Slope and

Koyukuk and Upper Kobuk, above 10 000% and 500%,

respectively. The downscaled reanalysis estimates of

lightning over 1979–2015 were much more subdued with

increases ranging from 24% to 62% in the interior

PSAs (Fig. 8b). The trends were even lower in the re-

analysis estimates when considered over the 1986–2015

period (not shown). Averaged over all of the interior

PSAs, the June–July observed lightning increased by

98% while the reanalysis estimated an increase of

17% (Fig. 9a), however only the observed trend was

significant at the 90% level. The trend of the observed

lightning was therefore approximately one order of

magnitude greater than the regression-estimated light-

ning from the reanalysis over a similar time period. Only

one PSA, Tanana Valley-West, had similar trends in

both the observations and the reanalysis estimates

(;10% change). Fairbanks is located in this PSA and

has been the focus of the lightning detection network

since its initial deployment and may have a more

physically realistic trend through time than the other

PSAs where additional lightning sensors have been

added later and therefore have steeper and likely

spurious trends.

Given the large differences between the trends in

the observed and the modeled estimates of historical

lightning, a closer look into the historical June–July

lightning for the observed (corrected and uncorrected)

and model estimates are shown for the Tanana Valley-

West and Yukon-Kuskokwim Delta PSAs (Fig. 10).

These two PSAs provide contrasting views since the

Tanana Valley-West PSA (Fig. 10a) contains Fairbanks

and has the longest history of lightning sensor coverage

while the Yukon-Kuskokwim Delta PSA (Fig. 10b) has

always had limited sensor coverage. The corrected and

uncorrected observations of lightning and modeled es-

timates based on the downscaled reanalysis for the

Tanana Valley-West PSA both experienced a similar

order of magnitude of change, 9.8% and 7.4%, respec-

tively, over 1986–2015, while the uncorrected lightning

experienced a more significant change of 73.3% due to

the change in the accounting of lightning strokes/flashes

later in the record. In contrast, the coastal Yukon-

Kuskokwim Delta PSA experienced changes of 536.2%

and 178.5% in the uncorrected and corrected observa-

tions, respectively, while the modeled estimates showed a

relatively slight decline of 26.9%. Here, the uncertainty

of the strike data is much larger since sensor coverage

has been limited through time. Therefore, regions like

the Yukon-KuskokwimDelta PSA show amuch greater

sensitivity in the variability of lightning strike counts

due to changes in the network than those in the inte-

rior where lightning sensors have been in operation

throughout the record and should be viewed with caution.

FIG. 7. June–July counts of weekly average convective pre-

cipitation amounts when one or more lightning strikes were

(a) observed and (b) estimated by the regression models over any

interior PSA for 1999–2015. Solid gray bars indicate the counts for

cases when at least one or more lightning strikes were present in a

PSA, and hatched bars indicate counts of weeks when no strikes

were present.
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However, these findings cannot conclusively prove that

the steeper trends in the observations were due to

changes in the sensor network as that would be an in-

volved, if not unwieldy task, and is therefore beyond the

scope of this study. Assessing the individual predictor

variables gives additional insight into the possible vari-

ability and change of Alaska lightning activity over the

historical record.

Convective precipitation was found to be a key vari-

able based on the regression analysis in the preceding

section. Over the interior PSAs, the June–July convec-

tive precipitation based on the downscaled ERA-

Interim reanalysis increased by 5.5% over 1979–2015

(Fig. 9b). The 850–500-hPa temperature difference,

dewpoint temperature, 2-m temperature, and 500-hPa

height predictors increased by 0.2%, 5%, 6%, and 0.2%,

respectively (Figs. 9c–f). No interior PSA predictor

variable trends were statistically significant at the 95%

or greater level. Direct validation of the WRF Model–

derived convective precipitation variable is not possible

from observations, however trends of precipitation at

the climate divisions scale in the interior were rela-

tively weak and mixed sign in June and July over 1981–

2012 (Bieniek et al. 2014). Therefore, it is unlikely that

convective precipitation has increased appreciably

since 1979.

While the predictors are based on a downscaled re-

analysis and not direct station observations like the

lightning observations, none of the predictor values

has amagnitude of change over the historical period that

would suggest a doubling of lightning. It is likely that the

relatively steep trends in the observed lightning dataset

are spurious due to the changes in the sensor network

noted earlier and that the reality of the lightning trend

is better reflected by downscaled reanalysis-regression

estimates of lightning activity. Consequently, our anal-

ysis suggests that lightning activity has increased over

the last 301 years in the interior PSAs by about 17%

(approximately 1240 strikes per year). There are few

studies that have documented trends in lightning ac-

tivity in Alaska. Veraverbeke et al. (2017) show that

lightning-ignited fires have increased in frequency by

4.82%yr21 over 1975–2015. This value is considerably

higher than the change in the amount of lightning

strikes estimated by the downscaled reanalysis predictors

(;0.4%yr21). However, ignitions and fire spread are also

dependent on the dryness of fuels and fire weather con-

ditions (temperature, wind, relative humidity), which may

FIG. 8. Percent change of June–July lightning strike counts based on Theil–Sen trend estimators for the

(a) observations over 1986–2015, and regression-estimated lightning derived from downscaled (b) ERA-Interim

over 1979–2015 and (c) CCSM and (d) GFDL over 2005–2100. Darker red shading corresponds to higher positive

percent change. Trends that are statistically significant at the 95% or greater level are shown in boldface.
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explain why the number of fire ignitions has increased

faster than the amount of lightning activity over the

historical record. For example, summer temperatures

have increased in interiorAlaska over the past 60–70 years

(Bieniek et al. 2014).

Much of the future variability of wildfire in Alaska

depends on how lightning activity is anticipated to

change over the next century. Figures 8c and 8d show the

percent change of June–July lightning activity estimates

anticipated over 2005–2100 derived from the normalized

predictor variables of the downscaled CCSM and GFDL

model projections. Both models anticipate increases in

lightning strike numbers throughoutmainlandAlaska. The

CCSM projection suggested a greater percentage change

over zones along the coasts than the GFDL. The overall

June–July lightning strike activity for the interior PSAs is

anticipated to increase by 103% (1655 strikes per year)

and 125% (1994 strikes per year) for the CCSM and

GFDL, respectively, over 2005–2100 (Fig. 9a). These

general trends are statistically significant at the 95% or

FIG. 9. June–July interior PSA (a) observed andmodeled lightning strike counts, and lightning predictor variable

anomalies for (b) convective precipitation, (c) 850–500-hPa temperature difference, (d) dewpoint temperature,

(e) 2-m temperature, and (f) 500-hPa height. Historical lightning observations are shown in black in (a), and the

downscaled estimates/variables from ERA-Interim, CCSM, and GFDL are shown in red, blue, and green, re-

spectively, in (a)–(f). Anomalies are relative to the 1981–2010 mean.
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greater level. The anticipated increase in June–July

interior lightning activity is reflected in the pro-

jected increases seen in nearly all of the predic-

tor variables (Figs. 9b–f). The only exception to

the positive trends in the predictor variables is for

the 850–500-hPa temperature difference stability

parameter fromGFDL (Fig. 9c). The GFDL stability

parameter shows an anticipated decline of approxi-

mately 0.028C yr21 over 2005–2100, indicative of in-

creasing stability.

Lightning activity is anticipated to increase globally

and regionally under climate change according to

various models, scenarios, and statistical approaches

(Krause et al. 2014; Price and Rind 1994; Romps et al.

2014). Veraverbeke et al. (2017) evaluated future pro-

jections of June–July lightning activity in interiorAlaska

among five CMIP5 models, using a regression approach

as in our study, and found an average increase of 59%

from the period of 1980–2004 to 2050–74. Over a similar

period, our projections from CCSM and GFDL anticipate

68%–132% increases in our analysis, respectively, under

the RCP8.5 emission scenario. Much of the differ-

ence among the models in this case is due to greater

variability in theCCSM lightning estimates during 2050–74

than in GFDL (Fig. 9a). Our results are generally within

the 41% error/uncertainty bounds given by Veraverbeke

et al. (2017), and our projections yield even higher uncer-

tainty. While additional downscaled emission scenarios

were not available for this study, it could also be surmised

that a lower emissions scenario like RCP4.5 would yield

more subdued increases in lightning activity since the

projected warming is not as pronounced as in RCP8.5 for

Alaska and cooler surface temperatures typically result in

lower rates of convection. All told, our analysis and the

prior studies all highlight that lightning activity is likely to

increase substantially by 2100 in interior Alaska during

June–July under climate change even if there is uncer-

tainty about the final magnitude of the change.

4. Conclusions

Lightning is a key driver of large wildfire in Alaska,

and our analysis shows that summer lightning activity

has increased over the historical record in interior

Alaska, albeit with a much lower magnitude of change

than the observations from ALDN would suggest. This

increasing trend in historical lightning activity was esti-

mated frommodest increases in convective precipitation

and other predictor variables derived from the dynami-

cally downscaled ERA-Interim reanalysis. Although di-

rect validation of a model-derived quantity such as

convective precipitation is not possible using station ob-

servations, average summer precipitation trends over the

interior better matched themodest increase in convective

precipitation than the steeper increasing ALDN trends.

Downscaled future projections indicate that lightning

activity may double by the end of the twenty-first cen-

tury relative to current values. Such an increase in

lightning strikes frequency in June–July could increase

ignitions if fuel conditions remain the same as in present

or worsen. If summers become generally wetter, then

the impact onwildfires would be offset. Additional study

is needed to incorporate changes in fire weather condi-

tions, fuels, and lightning ignitions to fully capture how

wildfire may evolve over the next century.
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